Advanced password
guessing

Hashcat techniques for the last 20%

Name: Jens Steube

Nick: atom

Coding Projects:

AbOUt me hashcat / oclHashcat

Work Status:
Employed as Coder but not crypto- or security-relevant

Jens Steube - Advanced password guessing

Tools Overview

the hashcat universe

Jens Steube - Advanced password guessing

Tools overview

Name
hashcat

oclHashcat-plus

oclHashcat-lite

hashcat-utils

maskprocessor

statsprocessor

Jens Steube - Advanced password guessing

Type
Multi-purpose cracker on CPU

Multi-purpose cracker on GPU,
Flagship

Competition cracker on GPU,
Performance

Set of handy commandline
utilities in password guessing

Standalone word-generator
with mask support, very fast

Standalone word-generator
based on markov-chains

VY ENGE

Why to use them - not how

Jens Steube - Advanced password guessing

Masks are often used in hashcat, and one can greatly benefit
from it if they know how to use them

MaSkS Masks are usually a simple topic, but too many people still
don’t know how to use them, or why

I’ll show you a reason why hashcat makes use of them

Jens Steube - Advanced password guessing

Imagine you want to configure a program to generate all
words of:

ddd — 277

There are many ways to do it, for example:

Masks

It could have the ability to set a charset (lalpha)
It could have the ability to set a password-length (3)

It’s an intuitional approach - And already requires two
parameters to be set

Jens Steube - Advanced password guessing

For some reason, you have additional information about the
password

You know it ends with 1984

How would you want the program to accept this additional
information?

Masks

Add a parameter that lets you define a salt to append

That’s very intuitional, again

But at this point our program already need 3 parameters

Jens Steube - Advanced password guessing

One more example

People tend to capitalize the first letter of a password but
not the rest

How could you tell that to captilize only the first letter?

Masks

Well, add a flag for this ...

What about if you know the password capitalizes the first
two letters?

Finally, your program will require more and more parameters

Jens Steube - Advanced password guessing

Masks can solve this!

Don’t worry, they are by far not as complex as regular
expressions

Two reasons:

MaSkS Need to be calculated fast (see performance table)

Need to be easy to understand

To learn how to use mask attacks with hashcat, read the
"Mask Attack" article on the hashcat wiki, it's only 2 pages

Jens Steube - Advanced password guessing

maskprocessor

High-performance standalone word-generator

Jens Steube - Advanced password guessing

Maskprocessor is a standalone program that requires at least
one parameter: The mask

maSkp Frocessor It then prints all words from the selected keyspace to stdout
or to a file

There are many scenarios where you can use this program

Jens Steube - Advanced password guessing

maskprocessor

For example: Aircrack-ng. Aircrack-ng? Yes!

Aircrack-ng does not have support for masks, but it does
have support for reading candidates from stdin

The command:

mp64 ?1?1?1?1?d?d?d?d | aircrack-ng -w —

Works on Linux and Windows. Yes, windows can do pipes!

You don’t need to write it into a wordlists and waste
gigabytes of hdd space plus that would produce unnecessary
|/0 while loading it from disc

In case you ever wished aircrack-ng should have brute-force
abilities for WPA/WPA?2 you can do that this way (have fun)

Jens Steube - Advanced password guessing

Another nice example for how to use maskprocessor is when
you want to generate rules. Rules? Yes!

| will explain rules a bit more later, but for now Imagine you
want to crack a password and you know it starts with a
uppercase letter and ends with a digit

maSkprocessor You could use grep and pick the right words from your
dictionary

But you could also add all uppercase letters and all digits to
all of your words in the dictionary

That sounds crazy but from my experience it’s the better
attack

Jens Steube - Advanced password guessing

A way to do this is to use rules. I'll explain rules later in more
detail but for now its enough to know its a little
programming language

With a rule you can only append or prepend 1 specific
character. You can not select a range. But you can have as
many rules as you want

maskprocessor That makes 26 * 10 rules in total. You want to write that per
hand? Have fun

You can code a little script to do it or you use maskprocessor
to do it:

mp64 -o bla.rule 'A?| S?d’

Jens Steube - Advanced password guessing

maskprocessor

If you‘re stuck with a hashlist there is usually no way around
identify the pattern of the cracked passwords

Once you‘ve figured them out you have another problem:
How do | to tell hashcat how to generate the candidates
without a specific attack-mode?

The answer is simple. It’s often possible to write your own
attack-modes by a combination of maskprocessor and
hashcat rules

Maskprocessor is very fast: A single CPU core is around 50-
100 produced MW/s and more. That's typically fast enough
to feed hashcat

If you‘re writing a cracker you can use maskprocessor to do
the password-generator work

Jens Steube - Advanced password guessing

statsprocessor

The special maskprocessor

Jens Steube - Advanced password guessing

The statsprocessor is basically the same as the
maskprocessor but with one difference:

It's using markov-chains to optimize the output in
probabilistic order

statsprocessor

As long as you are not modifying the threshold the number

of output to maskprocessor is the same, just the ordering
differs

The calculation makes it a bit slower than mask-processor
but when you have a slow algorithm like TrueCrypt that
doesn’t matter since the blocking part in this case is the
algorithm, not the generator

Jens Steube - Advanced password guessing

Attack-modes Overview

All roads lead to the password

Jens Steube - Advanced password guessing

Hashcat supports basic attack-modes (not discussed here):
Dictionary

Brute-Force

Hashcat supports advanced attack-modes:
Combinator

Attack-modes Table-Lookup
Toggle-Case
Permutation
Fingerprint
Hybrid
Rule-based

Jens Steube - Advanced password guessing

Combinator attack

Attack-modes

Jens Steube - Advanced password guessing

This is one of my favorite attack-modes when reaching a
higher percentage level of cracking a hashlist

The idea is very simple. You have two dictionaries, not one.
. They are named as left and right dictionar
combinator- v £ v

Each word of the right dictionary is appended to each word
attaCk of the left dictionary

Another way to explain it is: If your left dictionary contains
100 words and the right dictionary contains 50 words, then
the number of total candidates generated is 100 * 50 = 5000

Jens Steube - Advanced password guessing

This is a good way to produce full names and compound
words

Example, if you have a dictionary that contains only first

: names.
combinator- Lucy
attack AUl

You can use the same dictionary on both sides, thus
efficiently create full names:

LucyAnn
AnnlLucy

Jens Steube - Advanced password guessing

combinator-
attack

Usually they are not written that way. What you can do is to
apply an additional single rule per dictionary. That can be
done with the -j and the -k parameters with oclHashcat-plus
or with the combinator.rule in hashcat-CPU

The Idea is to append a "-" character to each of the words
from the left dictionary:
Lucy-Ann

Ann-Lucy

NOTE: The same works for a space char, too

Jens Steube - Advanced password guessing

It’s also effective against passphrases

Dictionary contains:
is gazwsxedc key the cure am my <space> pass this Love i

Results in:
combinator- fhis 15 my pass
i am the cure
attaCk Love is the key

NOTE: This requires two rounds of hashcat, one using —stdout

As with all good attack-modes they produce stuff you do not
think of in the first place, so it cracked:

gazwsxedc<space>

Jens Steube - Advanced password guessing

Table attack

Attack-modes

Jens Steube - Advanced password guessing

This attack mode is also based on dictionaries. You can attack
the following targets well:

International characters
Toggled-case words
Leetspeek

Fill “holes” in your dictionary

ta ble‘attaCk The targets also can be combined, like:
Toggled-case words + Leetspeak

The table attack takes a configuration file, the "table"

Inside the table, you do a simple X=Y binding per line
Where X is a character that is to replace with Y

NOTE: You can use X multiple times

Jens Steube - Advanced password guessing

Example table
a=A
a=@
a=a
a=/\

Example dictionary
table-attack Anits

Example candidates generated
AnitA

Anit@
Anita
Anit/\

Jens Steube - Advanced password guessing

Toggle-case attack

Attack-modes

Jens Steube - Advanced password guessing

One of the easiest attack-modes

This attack simply tries all upper- and lower-case of a word
from a dictionary

If your dictionary contains “abc”, It generates:
abc

Toggle-Case Abc

attack aBc
ABC

abC
AbC
aBC
ABC

Jens Steube - Advanced password guessing

Toggle-Case
attack

While this attack is supported, it does not make sense to do
it this way

Here‘s why: When people use capitalized letters they either
use it at the first letter or the in the word

There is another variant in which people use less or equal
capitalized letters than lowercase letters. For example,
passwords of length 10 do not have more than 5 uppercased
letters

oclHashcat-plus therefore uses rules to do Toggle-Case
attack. There are rules for toggling 1-5 letters in the hashcat
rules directory

Since rules are compatibe between oclHashcat-plus and
hashcat, you can also use them in hashcat

Jens Steube - Advanced password guessing

If you really want to do full toggle-case attack you can still
feed oclHashcat-plus from hashcat piped candidates:

Toggle-Case hashcat-cli -a 2 your.dict --stdout | oclHashcat-plus
attack your.hashlist

NOTE: This will work efficiently only for slow hashes

Jens Steube - Advanced password guessing

If you combine the toggle.rule with leetspeak.rule you can
crack more sophisticated passwords:

oclHashcat-plus your.hashlist -r rules/toggles3.rule -r
rules/leetspeak.rule

Produces:
Scotl@nd

Toggle-Case Sh@mrock

attack j35USFr3aK
AlexAndrla

MyPaSSword
SailorMQon

Admittedly, the table attack is a much better approach to do
this, but there is no table-attack for oclHashcat-plus. This is a
good emulation

Jens Steube - Advanced password guessing

Permutation attack

Attack-modes

Jens Steube - Advanced password guessing

This attack mode was an idea that for some reason never
really
worked well

| want to show what the Idea was, maybe you can use it

Permutation attack is exactly what it sounds like:

Permutation-

attack ABC
ACB
BAC
BCA
CAB

CBA

Jens Steube - Advanced password guessing

The original Idea was that if the user has the following word
in his dictionary:
Pass123

It will produce the following candidates:
passl23

Permutation- pass321

attack 1pa5523
3pass2l

12pass3
32passl
123pass
321pass

Jens Steube - Advanced password guessing

From my experience these are passwords that people

actually use
Permutation- NOTES:
attack It's supported in hashcat CPU only, you can use --stdout

It's also a standalone binary in hashcat-utils in case you
find a different use for it

Jens Steube - Advanced password guessing

Fingerprint attack

Attack-modes

Jens Steube - Advanced password guessing

The fingerprint attack is by far to complex to discuss is in
here

The goal is to crack complex passwords like this:
. . 10-D'A
Fingerprint- .
attack

But in an automated way so that it does not require human
attention

It makes extensive use of the expander utility that comes
with hashcat-utils

Read more about the fingerprint attack on the hashcat wiki

Jens Steube - Advanced password guessing

We used it at Defcon 2010 when team hashcat won the
"Crack Me If You Can" competition

Fingerprint-
attack

The autocrack-plus.pl cracking helper also makes use of this

There are also example videos made by the backtrack
developers to explain it, you can find it on youtube.

Jens Steube - Advanced password guessing

Rule-based attack

Attack-modes

Jens Steube - Advanced password guessing

Rule-based
attack

The rule-based attack is the first attack | do against large
unsalted hashlists because its the most economic one

The chosen candidates have a very high probability and the
dictionary this attack bases only can be chosen freely

Everyone who ever used oclHashcat-plus knows that it
requires some workload to run with full speed. That is
because the GPU must be remain busy

If | run just a dictionary again a large hashlist it will crack a lot
but the GPU will idle

Add rules too because it costs you nothing in terms of time.
The number of additionally produced candidates are for free
because of the performance gain you get

Jens Steube - Advanced password guessing

Rule-based
attack

Rules are little programming language. Hashcat (among
others) has a built-in interpreter for it. It’s specially designed
for word manipulations. The user can program it pretty
easily.

The functions you can use are very basic

There is a rule to append character and to prepend, you can
cut around ranges, reverse the words, etc..

Read all about how to write and use rules on the hashcat
wiKki

There is also a few example rules in the rules/ folder for
hashcat and oclHashcat-plus you can take a look at

Jens Steube - Advanced password guessing

With hashcat you can let it write debugging information
about how the rule engine processed a word to crack a
password, what the basic password was, what the rule was,
etc. that you can build up statistics about their efficiency

Rule-based
This i ' feat
attaCk IS IS a unique reature

We have already use it to rules/generate.rule file
automatically

You can also use the --stdout option, see debugging section

Jens Steube - Advanced password guessing

Rule-based
attack

There is another unique feature in oclHashcat-plus that
allows you to stack rules. You can configure to use multiple
rules files.

NOTE: that does not mean to execute them in a
sequence

The multi-rule feature combines like the combinator-attack
each rule of both rule-files with each other

You can this way create new attack-modes. There is a special
subfolder hybrid/ in the rules/ folder that are simple with
maskprocessor generator rules that just appends all letters

There is another one that does the same, but prepends all
letters

Jens Steube - Advanced password guessing

If you use them together with -r rules/hybrid/prepend_l.rule

_ -r rules/hybrid/append_l.rule it actually does both things at
RU Ie baSEd once with your words
attack If you have “xpasswordy" to be cracked, and you dictionary

contains "password", you will crack it

Jens Steube - Advanced password guessing

Hybrid attack

Attack-modes

Jens Steube - Advanced password guessing

Hybrid attacks is my favourite attack against large unsalted
hashlists for dictionary building once I've finished rules

It's common knowledge people append years, birthdays and
number to names, locations, etc, right?

Hybrid-attack

But which ones and how can you be sure you hit the right
one? You cant so you have to guess

But using brute-force to attack against names and locations
seems inefficient, no?

Jens Steube - Advanced password guessing

The hybrid attack has two parameters. One is a dictionary
and one is a mask. Again, you see why its important to
understand masks here

Simply defined, the hybrid attack brute-forces a range and
this range is appended or prepended to each word from your

Hybrid-attack dictionary

You can choose whatever side you want the dictionary, the
left or the right side. | recommend to try both

But depending on the side were you place the dictionary, you
should change the mask

Jens Steube - Advanced password guessing

When you have the dictionary on the right side it’s more

common users choose numbers or symbols to make the
password “more secure”

Example:

Hybrid-attack Julia1984

Passwordl!!@
NewYork1+2

You should craft your mask like this: -1 ?d?s ?1?1?1

Jens Steube - Advanced password guessing

But there is more Fun stuff. You can "exploit" this mode to
crack passwords which are only partially in your dictionary.

For example, you want to crack:

thecathat

Hybrid-attack

But you have just the word "thecat" in your dictionary, the
mask ?1?1?| appended to will crack it

It‘s again one of these attack-modes that will result in
cracked passwords you did not think of in the first place or
you did not target directly but you‘ll get them as a bonus

Jens Steube - Advanced password guessing

The opposide side is also nice, but you should change the
type of masks you're attacking

‘1 Typically this is good if you have partial passwords again and
Hybrld attaCk the password to be cracked is capitalized

You have the password "Telephone" but your dictionary only
contains "phone"”, the mask ?u?l?I?l would crack it

Jens Steube - Advanced password guessing

I'll leave this attack-mode and recommend you my absolute
favorite attack:

Hybrid-attack

-a 6 my.dict -1 ?1?d?s ?1?1?1

Jens Steube - Advanced password guessing

Using hashcat’s --stdout

... to feed other crackers

Jens Steube - Advanced password guessing

Hashcat is still a young project (compared to other crackers)
not all hash-algorithms are supported yet

If you need to use a different cracker like JtR to crack an
unsupported hash you can still use hashcat’s advanced
attack-modes to feed them with candidates

It‘s simple:

Using hashcat’s
--stdout

hashcat-cli -a 2 my.dict --stdout | john --pipe my.hash

As long as the cracker supported reading plains from stdin
this should work. If you‘re coding a special cracker for
something this could help you to focus on the cracking part,
not on the generating part.

Jens Steube - Advanced password guessing

Debugging

Is it doing what you want it to do?

Jens Steube - Advanced password guessing

Often you prepare something you think this is what you want
but then it runs and runs and nothing happens

Debugging You begin to think did | everything correctly?

Attack-modes can become very complex, you better take a
look at it!

Jens Steube - Advanced password guessing

In hashcat (CPU only!) you can use the --stdout parameter

As discussed in the previous section, this parameter is
primary used to pipe candidates outputs into external
programs but you can also use it to see what hashcat is doing

Debugglng In oclHashcat-plus you can not, but the attack-modes are
compatible. If you want to debug stuff for oclHashcat-plus
you can use hashcat

If the output does not match what you think it does you
don’t need to worry any longer

Jens Steube - Advanced password guessing

It can also help to learn rules. Try it, just create a single rule-
file and place into it:

$1
Debugging

Save it and then execute hashcat-cli -r my.rule --stdout
some.dict

All candidates should have a 1 appended

This works for all attack-modes

Jens Steube - Advanced password guessing

Feel free to contact me!

Thank you via Twitter: @hashcat

for |istening! via Hashcat forum: http://hashcat.net/forum/
via IRC: freenode #hashcat
via Email: atom at hashcat.net

Jens Steube - Advanced password guessing

