
Advanced password
guessing
Hashcat techniques for the last 20%

Version 1.0 - 2013.05.12

About me

 Name: Jens Steube

 Nick: atom

 Coding Projects:
 hashcat / oclHashcat

 Work Status:
 Employed as Coder but not crypto- or security-relevant

Jens Steube - Advanced password guessing 2

Tools Overview
the hashcat universe

Jens Steube - Advanced password guessing 3

Tools overview

Name Type

hashcat Multi-purpose cracker on CPU

oclHashcat-plus Multi-purpose cracker on GPU,
Flagship

oclHashcat-lite Competition cracker on GPU,
Performance

hashcat-utils Set of handy commandline
utilities in password guessing

maskprocessor Standalone word-generator
with mask support, very fast

statsprocessor Standalone word-generator
based on markov-chains

Jens Steube - Advanced password guessing 4

Masks
Why to use them - not how

Jens Steube - Advanced password guessing 5

Masks

 Masks are often used in hashcat, and one can greatly benefit
from it if they know how to use them

 Masks are usually a simple topic, but too many people still
don’t know how to use them, or why

 I’ll show you a reason why hashcat makes use of them

Jens Steube - Advanced password guessing 6

Masks

 Imagine you want to configure a program to generate all
words of:

 aaa – zzz

 There are many ways to do it, for example:

 It could have the ability to set a charset (lalpha)

 It could have the ability to set a password-length (3)

 It’s an intuitional approach - And already requires two
parameters to be set

Jens Steube - Advanced password guessing 7

Masks

 For some reason, you have additional information about the
password

 You know it ends with 1984

 How would you want the program to accept this additional
information?

 Add a parameter that lets you define a salt to append

 That’s very intuitional, again

 But at this point our program already need 3 parameters

Jens Steube - Advanced password guessing 8

Masks

 One more example

 People tend to capitalize the first letter of a password but
not the rest

 How could you tell that to captilize only the first letter?

 Well, add a flag for this ...

 What about if you know the password capitalizes the first
two letters?

 Finally, your program will require more and more parameters

Jens Steube - Advanced password guessing 9

Masks

 Masks can solve this!

 Don’t worry, they are by far not as complex as regular
expressions

 Two reasons:

 Need to be calculated fast (see performance table)

 Need to be easy to understand

 To learn how to use mask attacks with hashcat, read the
"Mask Attack" article on the hashcat wiki, it's only 2 pages

Jens Steube - Advanced password guessing 10

maskprocessor
High-performance standalone word-generator

Jens Steube - Advanced password guessing 11

maskprocessor

 Maskprocessor is a standalone program that requires at least
one parameter: The mask

 It then prints all words from the selected keyspace to stdout
or to a file

 There are many scenarios where you can use this program

Jens Steube - Advanced password guessing 12

maskprocessor

 For example: Aircrack-ng. Aircrack-ng? Yes!

 Aircrack-ng does not have support for masks, but it does
have support for reading candidates from stdin

 The command:

 mp64 ?l?l?l?l?d?d?d?d | aircrack-ng -w –

 Works on Linux and Windows. Yes, windows can do pipes!

 You don’t need to write it into a wordlists and waste
gigabytes of hdd space plus that would produce unnecessary
I/O while loading it from disc

 In case you ever wished aircrack-ng should have brute-force
abilities for WPA/WPA2 you can do that this way (have fun)

Jens Steube - Advanced password guessing 13

maskprocessor

 Another nice example for how to use maskprocessor is when
you want to generate rules. Rules? Yes!

 I will explain rules a bit more later, but for now Imagine you
want to crack a password and you know it starts with a
uppercase letter and ends with a digit

 You could use grep and pick the right words from your
dictionary

 But you could also add all uppercase letters and all digits to
all of your words in the dictionary

 That sounds crazy but from my experience it’s the better
attack

Jens Steube - Advanced password guessing 14

maskprocessor

 A way to do this is to use rules. I'll explain rules later in more
detail but for now its enough to know its a little
programming language

 With a rule you can only append or prepend 1 specific
character. You can not select a range. But you can have as
many rules as you want

 That makes 26 * 10 rules in total. You want to write that per
hand? Have fun

 You can code a little script to do it or you use maskprocessor
to do it:

 mp64 -o bla.rule '^?l $?d‘

Jens Steube - Advanced password guessing 15

maskprocessor

 If you‘re stuck with a hashlist there is usually no way around
identify the pattern of the cracked passwords

 Once you‘ve figured them out you have another problem:
How do I to tell hashcat how to generate the candidates
without a specific attack-mode?

 The answer is simple. It’s often possible to write your own
attack-modes by a combination of maskprocessor and
hashcat rules

 Maskprocessor is very fast: A single CPU core is around 50-
100 produced MW/s and more. That's typically fast enough
to feed hashcat

 If you‘re writing a cracker you can use maskprocessor to do
the password-generator work

Jens Steube - Advanced password guessing 16

statsprocessor
The special maskprocessor

Jens Steube - Advanced password guessing 17

statsprocessor

 The statsprocessor is basically the same as the
maskprocessor but with one difference:

 It's using markov-chains to optimize the output in
probabilistic order

 As long as you are not modifying the threshold the number
of output to maskprocessor is the same, just the ordering
differs

 The calculation makes it a bit slower than mask-processor
but when you have a slow algorithm like TrueCrypt that
doesn’t matter since the blocking part in this case is the
algorithm, not the generator

Jens Steube - Advanced password guessing 18

Attack-modes Overview
All roads lead to the password

Jens Steube - Advanced password guessing 19

Attack-modes

 Hashcat supports basic attack-modes (not discussed here):
 Dictionary

 Brute-Force

 Hashcat supports advanced attack-modes:
 Combinator

 Table-Lookup

 Toggle-Case

 Permutation

 Fingerprint

 Hybrid

 Rule-based

Jens Steube - Advanced password guessing 20

Combinator attack
Attack-modes

Jens Steube - Advanced password guessing 21

combinator-
attack

 This is one of my favorite attack-modes when reaching a
higher percentage level of cracking a hashlist

 The idea is very simple. You have two dictionaries, not one.
They are named as left and right dictionary

 Each word of the right dictionary is appended to each word
of the left dictionary

 Another way to explain it is: If your left dictionary contains
100 words and the right dictionary contains 50 words, then
the number of total candidates generated is 100 * 50 = 5000

Jens Steube - Advanced password guessing 22

combinator-
attack

 This is a good way to produce full names and compound
words

 Example, if you have a dictionary that contains only first
names:

 Lucy

 Ann

 You can use the same dictionary on both sides, thus
efficiently create full names:

 LucyAnn

 AnnLucy

Jens Steube - Advanced password guessing 23

combinator-
attack

 Usually they are not written that way. What you can do is to
apply an additional single rule per dictionary. That can be
done with the -j and the -k parameters with oclHashcat-plus
or with the combinator.rule in hashcat-CPU

 The Idea is to append a "-" character to each of the words
from the left dictionary:

 Lucy-Ann

 Ann-Lucy

 NOTE: The same works for a space char, too

Jens Steube - Advanced password guessing 24

combinator-
attack

 It’s also effective against passphrases

 Dictionary contains:
 is qazwsxedc key the cure am my <space> pass this Love i

 Results in:
 this is my pass

 i am the cure

 Love is the key

 NOTE: This requires two rounds of hashcat, one using –stdout

 As with all good attack-modes they produce stuff you do not
think of in the first place, so it cracked:

 qazwsxedc<space>

Jens Steube - Advanced password guessing 25

Table attack
Attack-modes

Jens Steube - Advanced password guessing 26

table-attack

 This attack mode is also based on dictionaries. You can attack
the following targets well:

 International characters

 Toggled-case words

 Leetspeek

 Fill “holes” in your dictionary

 The targets also can be combined, like:
 Toggled-case words + Leetspeak

 The table attack takes a configuration file, the "table"

 Inside the table, you do a simple X=Y binding per line
 Where X is a character that is to replace with Y

 NOTE: You can use X multiple times

Jens Steube - Advanced password guessing 27

table-attack

 Example table
 a=A

 a=@

 a=ä

 a=/\

 Example dictionary
 Anita

 Example candidates generated
 AnitA

 Anit@

 Anitä

 Anit/\

Jens Steube - Advanced password guessing 28

Toggle-case attack
Attack-modes

Jens Steube - Advanced password guessing 29

Toggle-Case
attack

 One of the easiest attack-modes

 This attack simply tries all upper- and lower-case of a word
from a dictionary

 If your dictionary contains “abc”, It generates:
 abc

 Abc

 aBc

 ABc

 abC

 AbC

 aBC

 ABC

Jens Steube - Advanced password guessing 30

Toggle-Case
attack

 While this attack is supported, it does not make sense to do
it this way

 Here‘s why: When people use capitalized letters they either
use it at the first letter or the in the word

 There is another variant in which people use less or equal
capitalized letters than lowercase letters. For example,
passwords of length 10 do not have more than 5 uppercased
letters

 oclHashcat-plus therefore uses rules to do Toggle-Case
attack. There are rules for toggling 1-5 letters in the hashcat
rules directory

 Since rules are compatibe between oclHashcat-plus and
hashcat, you can also use them in hashcat

Jens Steube - Advanced password guessing 31

Toggle-Case
attack

 If you really want to do full toggle-case attack you can still
feed oclHashcat-plus from hashcat piped candidates:

 hashcat-cli -a 2 your.dict --stdout | oclHashcat-plus
your.hashlist

 NOTE: This will work efficiently only for slow hashes

Jens Steube - Advanced password guessing 32

Toggle-Case
attack

 If you combine the toggle.rule with leetspeak.rule you can
crack more sophisticated passwords:

 oclHashcat-plus your.hashlist -r rules/toggles3.rule -r
rules/leetspeak.rule

 Produces:
 Scotl@nd

 Sh@mr0ck

 j3sUsFr3aK

 AlexAndr1a

 MyPa$$word

 $ailorM0on

 Admittedly, the table attack is a much better approach to do
this, but there is no table-attack for oclHashcat-plus. This is a
good emulation

Jens Steube - Advanced password guessing 33

Permutation attack
Attack-modes

Jens Steube - Advanced password guessing 34

Permutation-
attack

 This attack mode was an idea that for some reason never
really
worked well

 I want to show what the Idea was, maybe you can use it

 Permutation attack is exactly what it sounds like:

 ABC

 ACB

 BAC

 BCA

 CAB

 CBA

Jens Steube - Advanced password guessing 35

Permutation-
attack

 The original Idea was that if the user has the following word
in his dictionary:

 Pass123

 It will produce the following candidates:
 pass123

 pass321

 1pass23

 3pass21

 12pass3

 32pass1

 123pass

 321pass

Jens Steube - Advanced password guessing 36

Permutation-
attack

 From my experience these are passwords that people
actually use

 NOTES:
 It's supported in hashcat CPU only, you can use --stdout

 It's also a standalone binary in hashcat-utils in case you
find a different use for it

Jens Steube - Advanced password guessing 37

Fingerprint attack
Attack-modes

Jens Steube - Advanced password guessing 38

Fingerprint-
attack

 The fingerprint attack is by far to complex to discuss is in
here

 The goal is to crack complex passwords like this:

 10-D'Ann

 But in an automated way so that it does not require human
attention

 It makes extensive use of the expander utility that comes
with hashcat-utils

 Read more about the fingerprint attack on the hashcat wiki

Jens Steube - Advanced password guessing 39

Fingerprint-
attack

 We used it at Defcon 2010 when team hashcat won the
"Crack Me If You Can" competition

 The autocrack-plus.pl cracking helper also makes use of this

 There are also example videos made by the backtrack
developers to explain it, you can find it on youtube.

Jens Steube - Advanced password guessing 40

Rule-based attack
Attack-modes

Jens Steube - Advanced password guessing 41

Rule-based
attack

 The rule-based attack is the first attack I do against large
unsalted hashlists because its the most economic one

 The chosen candidates have a very high probability and the
dictionary this attack bases only can be chosen freely

 Everyone who ever used oclHashcat-plus knows that it
requires some workload to run with full speed. That is
because the GPU must be remain busy

 If I run just a dictionary again a large hashlist it will crack a lot
but the GPU will idle

 Add rules too because it costs you nothing in terms of time.
The number of additionally produced candidates are for free
because of the performance gain you get

Jens Steube - Advanced password guessing 42

Rule-based
attack

 Rules are little programming language. Hashcat (among
others) has a built-in interpreter for it. It’s specially designed
for word manipulations. The user can program it pretty
easily.

 The functions you can use are very basic

 There is a rule to append character and to prepend, you can
cut around ranges, reverse the words, etc..

 Read all about how to write and use rules on the hashcat
wiki

 There is also a few example rules in the rules/ folder for
hashcat and oclHashcat-plus you can take a look at

Jens Steube - Advanced password guessing 43

Rule-based
attack

 With hashcat you can let it write debugging information
about how the rule engine processed a word to crack a
password, what the basic password was, what the rule was,
etc. that you can build up statistics about their efficiency

 This is a unique feature

 We have already use it to rules/generate.rule file
automatically

 You can also use the --stdout option, see debugging section

Jens Steube - Advanced password guessing 44

Rule-based
attack

 There is another unique feature in oclHashcat-plus that
allows you to stack rules. You can configure to use multiple
rules files.

 NOTE: that does not mean to execute them in a
sequence

 The multi-rule feature combines like the combinator-attack
each rule of both rule-files with each other

 You can this way create new attack-modes. There is a special
subfolder hybrid/ in the rules/ folder that are simple with
maskprocessor generator rules that just appends all letters

 There is another one that does the same, but prepends all
letters

Jens Steube - Advanced password guessing 45

Rule-based
attack

 If you use them together with -r rules/hybrid/prepend_l.rule
-r rules/hybrid/append_l.rule it actually does both things at
once with your words

 If you have “xpasswordy" to be cracked, and you dictionary
contains "password", you will crack it

Jens Steube - Advanced password guessing 46

Hybrid attack
Attack-modes

Jens Steube - Advanced password guessing 47

Hybrid-attack

 Hybrid attacks is my favourite attack against large unsalted
hashlists for dictionary building once I've finished rules

 It's common knowledge people append years, birthdays and
number to names, locations, etc, right?

 But which ones and how can you be sure you hit the right
one? You cant so you have to guess

 But using brute-force to attack against names and locations
seems inefficient, no?

Jens Steube - Advanced password guessing 48

Hybrid-attack

 The hybrid attack has two parameters. One is a dictionary
and one is a mask. Again, you see why its important to
understand masks here

 Simply defined, the hybrid attack brute-forces a range and
this range is appended or prepended to each word from your
dictionary

 You can choose whatever side you want the dictionary, the
left or the right side. I recommend to try both

 But depending on the side were you place the dictionary, you
should change the mask

Jens Steube - Advanced password guessing 49

Hybrid-attack

 When you have the dictionary on the right side it’s more
common users choose numbers or symbols to make the
password “more secure“

 Example:

 Julia1984

 Password1!!@

 NewYork1+2

 You should craft your mask like this: -1 ?d?s ?1?1?1

Jens Steube - Advanced password guessing 50

Hybrid-attack

 But there is more Fun stuff. You can "exploit" this mode to
crack passwords which are only partially in your dictionary.

 For example, you want to crack:

 thecathat

 But you have just the word "thecat" in your dictionary, the
mask ?l?l?l appended to will crack it

 It‘s again one of these attack-modes that will result in
cracked passwords you did not think of in the first place or
you did not target directly but you‘ll get them as a bonus

Jens Steube - Advanced password guessing 51

Hybrid-attack

 The opposide side is also nice, but you should change the
type of masks you're attacking

 Typically this is good if you have partial passwords again and
the password to be cracked is capitalized

 You have the password "Telephone" but your dictionary only
contains "phone", the mask ?u?l?l?l would crack it

Jens Steube - Advanced password guessing 52

Hybrid-attack

 I'll leave this attack-mode and recommend you my absolute
favorite attack:

 -a 6 my.dict -1 ?l?d?s ?1?1?1

Jens Steube - Advanced password guessing 53

Using hashcat’s --stdout
… to feed other crackers

Jens Steube - Advanced password guessing 54

Using hashcat’s
--stdout

 Hashcat is still a young project (compared to other crackers)
not all hash-algorithms are supported yet

 If you need to use a different cracker like JtR to crack an
unsupported hash you can still use hashcat‘s advanced
attack-modes to feed them with candidates

 It‘s simple:

 hashcat-cli -a 2 my.dict --stdout | john --pipe my.hash

 As long as the cracker supported reading plains from stdin
this should work. If you‘re coding a special cracker for
something this could help you to focus on the cracking part,
not on the generating part.

Jens Steube - Advanced password guessing 55

Debugging
Is it doing what you want it to do?

Jens Steube - Advanced password guessing 56

Debugging

 Often you prepare something you think this is what you want
but then it runs and runs and nothing happens

 You begin to think did I everything correctly?

 Attack-modes can become very complex, you better take a
look at it!

Jens Steube - Advanced password guessing 57

Debugging

 In hashcat (CPU only!) you can use the --stdout parameter

 As discussed in the previous section, this parameter is
primary used to pipe candidates outputs into external
programs but you can also use it to see what hashcat is doing

 In oclHashcat-plus you can not, but the attack-modes are
compatible. If you want to debug stuff for oclHashcat-plus
you can use hashcat

 If the output does not match what you think it does you
don’t need to worry any longer

Jens Steube - Advanced password guessing 58

Debugging

 It can also help to learn rules. Try it, just create a single rule-
file and place into it:

 $1

 Save it and then execute hashcat-cli -r my.rule --stdout
some.dict

 All candidates should have a 1 appended

 This works for all attack-modes

Jens Steube - Advanced password guessing 59

Thank you
for listening!

 Feel free to contact me!

 via Twitter: @hashcat

 via Hashcat forum: http://hashcat.net/forum/

 via IRC: freenode #hashcat

 via Email: atom at hashcat.net

Jens Steube - Advanced password guessing 60

