
Optimizing computation
of Hash-Algorithms as
an attacker

Version 1.0 - 2013.05.12

About me

 Name: Jens Steube

 Nick: atom

 Coding Projects:
 hashcat / oclHashcat

 Work Status:
 Employed as Coder, not crypto- or security-relevant

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 2

 In the context of password guessing the computation of
hash-algorithms can be optimized so that an attacker needs
less work to do then a defender.

 The reason is that hash-algorithms typically are not designed
to protect passwords - but developers use them to do it since
decades.

 This situation leads to optimizations that are possible for an
attacker that the autors of the hash-algorithms never tried to
avoid.

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 3

General Techniques
Overview

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 4

General
Techniques

Technique

Zero-based optimizations

Early-exit optimizations

Initial-step optimizations

Precomputing

Reversing aka Meet-in-the-middle

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 5

NOTE
• Some of the techniques in these slide are known, some are not
• All of them are used in oclHashcat-lite

Zero-based
optimizations
General Techniques

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 6

Zero-based
optimizations

 From computers view, passwords are just numbers

 The password 'password' takes two 32-bit integers

0000000: 70617373 776f7264 password

 It is copied to the algorithms input data block

 Typically fixed 512-bit, padded with zeros

0000000: 70617373 776f7264 00000000 00000000 password........

0000010: 00000000 00000000 00000000 00000000

0000020: 00000000 00000000 00000000 00000000

0000030: 00000000 00000000 00000000 00000000

 The above buffer shows the w[] array build out of the 16 elements

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 7

Zero-based
optimizations

 The password 'password' only took w[0] and w[1] to be
populated, the rest are zero

0000000: 70617373 776f7264 00000000 00000000 password........

0000010: 00000000 00000000 00000000 00000000

0000020: 00000000 00000000 00000000 00000000

0000030: 00000000 00000000 00000000 00000000

 This is how a single step function from the MD4 F() is
calculated:

#define FF(a,b,c,d,x,s) a += F (b, c, d) + x; ...

 The function is called 16 times, each call using a different
element of the input vector

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 8

Zero-based
optimizations

#define FF(a,b,c,d,x,s) a += F (b, c, d) + x; ...

 If x is 0 then there is no change in that last addition

 If the password only has the length 8, we know that w[2] -
w[15] are zero

 For all function calls that use w[2] - w[15] we can remove the
addition completely

 Note that most algorithms fill w[14] or w[15] in final()

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 9

Zero-based
optimizations

 Conclusion

 In MD4, this saves (on passwords < length 12) a total of
36 / 128 ADD instructions

 In MD5, this saves (on passwords < length 12) a total of x
/ 128 ADD instructions

 TBD, add more hash-algorithms …

 NOTE

 AFAIK, this technique works on all raw hashing
algorithms

 HMAC defeats this

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 10

Initial-step
optimizations
General Techniques

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 11

Initial-step
optimizations

 Here is a snippet from MD5

a = 0x67452301; b = 0xefcdab89;

c = 0x98badcfe; d = 0x10325476;

FF (a, b, c, d, w[0], 7, 0xd76aa478);

FF (d, a, b, c, w[1], 12, 0xe8c7b756);

FF (c, d, a, b, w[2], 17, 0x242070db);

FF (b, c, d, a, w[3], 22, 0xc1bdceee);

...

 The MD5 step macro looks like MD4 step macro in the
beginning

#define FF(a, b, c, d, x, s, ac) a += F (b, c, d) + x + ac; …

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 12

Initial-step
optimizations

a = 0x67452301; b = 0xefcdab89;

c = 0x98badcfe; d = 0x10325476;

FF (a, b, c, d, w[0], 7, 0xd76aa478);

 The only unknown part in the first step is w[0]

 All the other data is known

 We can replace the original MD5 step macro:

#define FF(a, b, c, d, x, s, ac) a += F (b, c, d) + x + ac; ...

 With this one:

#define FF(a, b, c, d, x, s, ac) a = 0xd76aa477 + x; ...

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 13

Initial-step
optimizations

 Conclusion

 Per step 1

 In MD4, this saves 6 instructions (x AND, x NOT, x
OR, x ADD)

 In MD5, this saves 6 instructions (x AND, x NOT, x
OR, x ADD)

 TBD, add more hash-algorithms …

 The next 3 steps can also be optimized like this

 Note that HMAC does not defeat this

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 14

Early-exit
optimizations
General Techniques

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 15

Early-exit
optimizations

 Here is a snippet from the last 4 steps of MD5

II (a, b, c, d, w[4], S41, 0xf7537e82); /* 61 */

II (d, a, b, c, w[11], S42, 0xbd3af235); /* 62 */

II (c, d, a, b, w[2], S43, 0x2ad7d2bb); /* 63 */

II (b, c, d, a, w[9], S44, 0xeb86d391); /* 64 */

state[0] += a;

state[1] += b;

state[2] += c;

state[3] += d;

 Again, in password guessing, the password is to short to
force a second transform

 Thus, we know the value of state[0], which is 0x67452301 in
MD4/MD5/SHA1

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 16

Early-exit
optimizations

 We know the value of state[0], which is 0x67452301 in
MD4/MD5/SHA1

 We simply subtract that constant from the hash we want to
guess

 Example, if our hash is
8743b52063cd84097a65d1633f5c74f5, then we can do:

hash[0] = 0x8743b520 - 0x67452301 = 0x1ffe921f

 Note that we do not need to be afraid to underflow the
integer. Actually, this is exactly what hashes do, too

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 17

Early-exit
optimizations

hash[0] = 0x8743b520 - 0x67452301 = 0x1ffe921f

 Since ‘a’ does not change anymore after step 61 in MD5 we
can do the comparison that makes this optimization an early-
exit

II (a, b, c, d, w[4], S41, 0xf7537e82); /* 61 */

if (a != hash[0]) return - 1;

II (d, a, b, c, w[11], S42, 0xbd3af235); /* 62 */

II (c, d, a, b, w[2], S43, 0x2ad7d2bb); /* 63 */

II (b, c, d, a, w[9], S44, 0xeb86d391); /* 64 */

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 18

Early-exit
optimizations

 Conclusion

 We can skip 3 entire steps

 In MD5, this means 30 instructions

 In MD4, this means 20 instructions

 TBD, add more hash-algorithms …

 Note that Keccak is safe from this

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 19

Precomputing
General Techniques

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 20

Precomputing

 This technique heavily depends on how much memory we
have and how fast it is to lookup a value from a table

 Keep our eyes open to see chances for precomputation
 Typically they give high rates of optimization

 Good examples for this is the Whirlpool and Oracle (old)
hash, we'll focus them later

 Example following …

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 21

Precomputing

 Assume we want to compute a SHA256 and we have a
candidate generator that only changes the last characters of
the password

 In other words, do not change the first 4 characters in w[0]

 If w[0] does not change, in step 1 we see:

t1 = H + S1(E) + Ch(E,F,G) + K[0] + W[0];

t2 = S0(A) + Maj(A,B,C);

H = G; G = F; F = E; E = D + t1; D = C; C = B; B = A; A = t1 + t2;

 Since A - H and K[0] are all constants and w[0] does not
change, we can precompute the new values for A and D
completely

 In the inner loop, we can start from step2

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 22

Partial reversing /
Meet-in-the-middle
General Techniques

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 23

Partial
reversing /
Meet-in-the-
middle

 This technique can not reverse back to it’s original password,
but it can be used to speed up the computation

 There is that statement that MD5 is a one-way function. It’s
true and it’s not true;

 In case we have the original data used to generate the
MD5 digest we -can- reverse the digest back to the
original MD5 initial values

 This works for MD4 and SHA1, too, maybe more…

 But in password guessing, how does that make any sense
since what we don't have is exactly the original data?

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 24

Partial
reversing /
Meet-in-the-
middle

 When we generate password candidates in our password
guesser, we can generated them in a specific way

 Assume we have a generator that only changes the first 4
characters of a password and hold the rest stay constant

AAAApass

AAABpass

ZZZZpass

 As a result, we change only w[0] and w[1] – w[15] stay
constant

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 25

Partial
reversing /
Meet-in-the-
middle

 In the outer loop
 The goal is to reverse back the algorithm steps as long

w[0] is not required to compute that specific step

 Store the intermediate digest of that specific step

 In the inner loop
 Start the normal "forward" computation of the hash

 Once we hit the step 1.1 on which we calculated the
intermediate digest we can stop the computation

 Compare the digest with the intermediate digest from
step 1.2

 If it does not match there is no need to continue to
calculate the rest of the steps. This is what gives the
speed boost

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 26

Targeted Algorithms
Overview

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 27

Targeted
Algorithms

Algorithm

MD4

MD5

SHA1

NetNTLMv1

Whirlpool

Oracle (DES)

HMAC

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 28

MD4
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 29

MD4

Used in

 MD4 (raw)

 NTLM

 Domain Cached
Credentials

 Domain Cached
Credentials2

 NetNTLMv1

 NetNTLMv2

Techniques

 Zero-based optimizations

 Initial-step optimizations

 Early-exit optimizations

 Precomputing

 Partial reversing / Meet-in-
the-middle

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 30

MD4

 It's a good example how to do all the techniques, especially
the partial reversing

 As mentioned in the technique description we need to
“reverse” the hash to a specific step

 This step is where w[0] is set the last time in the algorithm

 In case of MD4, it is step 33

HH (a, b, c, d, w[0], S31);

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 31

MD4

 Here's the original HH step macro of MD4:

#define HH(a, b, c, d, x, s)

a += 0x6ed9eba1;

a += x;

a += H (b, c, d);

a = ROTATE_LEFT (a, s);

 And the reversal is just an inverted function:

#define HH_REV(a, b, c, d, x, s)

a = ROTATE_RIGHT (a, s);

a -= H (b, c, d);

a -= x;

a -= 0x6ed9eba1;

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 32

MD4

 We call the inverted function from the last step back to step 34
HH_REV (d, a, b, c, w[8], S32); /* 34 */

 We can not reverse more at this point since w[0] is unknown in
the outer loop

HH_REV (a, b, c, d, w[0], S31); /* 33 */

 What we now have is the last intermediate value of D. This
means we can do the comparison of D when it was set the last
time which is:

GG (d, a, b, c, w[7], S22); /* 30 */

 Note that our meet-in-the-middle comparison is to do
after step 30

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 33

MD4

 In our inner loop, we just compute MD4 forward:

FF (a, b, c, d, x[0], S11); /* 1 */

FF (d, a, b, c, x[1], S12); /* 2 */

FF (c, d, a, b, x[2], S13); /* 3 */

…

 Now we can do the compare at step 30

…

GG (a, b, c, d, x[3], S21); /* 29 */

GG (d, a, b, c, w[7], S22);

if (d != d_rev) return -1;

 If „d“ does not match, there is no need to continue the
computation

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 34

MD4

 NOTE

 Actually it’s possible to reverse this even more but this
takes more explanation

 oclHashcat-lite does it’s meet-in-the-middle comparison
after step 26

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 35

MD4

 Conclusion

 We only need to calculate 30 of 48 steps due to the
reversing resulting in 33% speed increase

 All other optimization techniques will also apply, but in
combination with reversing they do not make sense,
except the Initial-step optimization

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 36

MD5
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 37

MD5

Used in

 MD5 (raw)

 Everywhere

Techniques

 Zero-based optimizations

 Initial-step optimizations

 Early-exit optimizations

 Precomputing

 Partial reversing / Meet-in-
the-middle

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 38

MD5

 The partial reversing works like in MD4

 The inverted function looks a bit different

#define II_REV(a, b, c, d, x, s, ac)

a -= b;

a = ROTATE_RIGHT (a, s);

a -= I (b, c, d);

a -= x;

a -= ac;

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 39

MD5

 Conclusion

 We only need to calculate 46 of 64 steps

 NOTE
 It’s possible to reverse this even more but this takes

more explanation

 oclHashcat-lite does it’s meet-in-the-middle comparison
after step 43

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 40

SHA1
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 41

SHA1

Used in

 SHA1 (raw)

 Everywhere

Techniques

 Zero-based optimizations

 Initial-step optimizations

 Early-exit optimizations

 Precomputing

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 42

SHA1

 I've already published a very specific optimization technique
for SHA1 that is a form of precomputing at Passwords^12

 It works by reducing the number of XOR's that are required
in the key-stretching phase and gains a total of 22% in
performance increase

 It’s too much to explain the details in this presentation. For
details, please take a look at this PDF:

 http://hashcat.net/p12/js-sha1exp_169.pdf

 There is another optimization for SHA1 based on early-exits

 You can use it as a standalone optimization in case you can
not use the XOR based optimization and you can use it in
combination with it. Both variants work

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 43

SHA1

 SHA1's step macro is a bit different to MD4 / MD5

 It sets both B and E (not just A) for each step

#define F4(f,a,b,c,d,e,x)

e += 0xca62c1d6;

e += x;

e += b ^ c ^ d;

e += ROTATE_LEFT (a, 5);

b = ROTATE_LEFT (b, 30);

 Typical implementation of the last steps looks like:

F4 (d, e, a, b, c, w[77]);

F4 (c, d, e, a, b, w[78]);

F4 (b, c, d, e, a, w[79]);

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 44

SHA1

 From looking at the code one would say we can early-exit is in
step 77, checking for E

 That’s correct, but we can do more. Take a close look again at
the step:

b = ROTATE_LEFT (b, 30);

 All it does is a simple rotate. Therefore we have no “loss” of
information at all

 We know E at the end (from our hash) so we can pre-reverse it

e = ROTATE_RIGHT (e, 30);

 Now, instead of doing an early-exit at step 77, we can do the
early-exit at step 75

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 45

SHA1

 Conclusion

 22% increase due to XOR optimization

 Another 4 steps saved due to extended early-exit
optimization

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 46

NetNTLMv1
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 47

NetNTLMv1

Used in

 Windows Networks

 File Shares

 SAMBA

Technique

 Early-exit

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 48

NetNTLMv1

 Even if it‘s „just“ an early-exit, it‘s an early-exit with big
impact

 To explain it, it‘s important to explain how to algorithm
works

 NOTE
 Examples takes from hashcat.net forum

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 49

NetNTLMv1

 The algorithm work by generating an NTLM hash out of the
password

hashcat -> b4b9b02e6f09a9bd760f388b67351e2b

 This hash is then broken into 3 x 56 bit parts and padded with
zeros

b4b9b02e6f09a9 bd760f388b6735 1e2b0000000000

 Each 56 bit part is odd parity adjusted to result in 3 x 64 bit parts

b4b9b02e6f09a9 -> b55d6d04e6792652

bd760f388b6735 -> bcba83e6895b9d6b

1e2b0000000000 -> 1f15c10101010101

 NOTE: MD4 outputs only 128 bit, the third part uses only 16 bits

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 50

NetNTLMv1

 Each of these part is then used as a key to DES encrypt the 8
byte challenge resulting in 3 ciphertext blocks:

b55d6d04e6792652 KEY-> DES(1122334455667788) -> 51a539e6ee061f64

bcba83e6895b9d6b KEY-> DES(1122334455667788) -> 7cd5d48ce6c68665

1f15c10101010101 KEY-> DES(1122334455667788) -> 3737c5e1de26ac4c

 The key of the DES buffer that results in the
3737c5e1de26ac4c is limited to a keyspace of only 64k
possible variants

 This is such a tiny keyspace so that we can brute-force it in
the startup phase on CPU typically in less than a second

 Once we found the input key, we know the last 16 bit of the
NTLM that was used to generate the NetNTLMv1 hash is
0x1e2b

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 51

NetNTLMv1

 Instead of doing all these steps again and again for each
candidate, all we need to do is to generate the NTLM hash

 Then we do:

if ((d & 0xffff) != d_pre) break;

 Once it passes this comparison (with a chance of 2^16) we
continue to calculate the hash the original way

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 52

NetNTLMv1

 Conclusion

 By doing this optimization we can crack NetNTLMv1 by
nearly the same speed as an NTLM plus we still can use
Zero-based optimizations and Initial-step optimizations
to speed up the NTLM computation

 Especially on GPU’s this optimization helps a lot since
this save the expensive s-box lookups from DES

 The performance gain is massive and it‘s hard to
calculate, but it‘s at least 5-10 times faster than without
the optimization, maybe more

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 53

whirlpool
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 54

whirlpool

Used in

 TrueCrypt

Technique

 Precomputing

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 55

whirlpool

 In whirlpool we can precompute all the rounds of K[] which
takes 50% of the entire whirlpool computation otherwise

 K[] is based on the initial hash value, which is always 0 at
start. For each round it’s doing some s-box lookups and XOR’s
them with the old value

 I've written a C program for precomputing, you can grab it
here:

 http://hashcat.net/p13/whirlpool_pc_K.c

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 56

whirlpool

 But we can do even more! Once we have K[] precomputed
we can reverse our target hash as we did in the early-exits in
MD5/SHA1:

state[0] = digest_buf[0] ^ pc_K[10][0];

state[1] = digest_buf[1] ^ pc_K[10][1];

state[2] = digest_buf[2] ^ pc_K[10][2];

...

 Still there is more room for optimization. Since whirlpool
does not use any arithmetic instructions but only bitwise
there is no data loss that we can not reproduce

 That means if we use our special password candidates
generator again that only changes w[0] in the inner loops, we
can precompute all values of the first round of Whirlpool

 In the first iteration we have to "correct" the data from the
precomputation. That is because w[0] changed slightly.

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 57

Whirlpool

 Conclusion

 Whirlpool can be optimized by more than 50% of the
entire calculation

 The optimization works even when protected with
HMAC

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 58

Oracle (old)
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 59

Oracle (old)

Used in

 Oracle 7-10g

Technique

 Precomputing

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 60

Oracle (old)

 This algorithm uses a cipher not a hash to store the password

 The scheme is the following:

 Encryption is DES-CBC

 IV = 0x0000000000000000

 KEY = 0x0123456789ABCDEF

 DATA = password

 In ciphers, to make cracking attempts slow, they have
designed the keysetup phase to calculate slow

 In this algorithm is that part that should be the slow part, the
keysetup, useless since it only the IV and the KEY and both of
them are known :)

 We can precompute the slow part by 100%, the 16x 48-bit
subkeys

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 61

Oracle (old)

 Conclusion

 Since the algorithm steps depend on the password
length it’s hard to say how much time is saved

 Again, especially on GPU’s this optimization helps alot
since this save the expensive s-box lookups from DES

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 62

HMAC
Targeted Algorithms

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 63

HMAC

Used in

 TrueCrypt

 WPA/WPA2

 1password

 LUKS

 LastPass

 DCC2

 PBKDF2 (always used)

Technique

 Precomputing

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 64

HMAC

 Most important to say here, HMAC is not an algorithm itself.
HMAC is a construction of a MAC (keyed hash) using a hash
function

 We can call HMAC very important since it's used in many
important algorithms to protect passwords

 It also defeats zero-based optimizations

 HMAC definition is simple
 HMAC (K,m) = H ((K ^ opad) || H ((K ^ ipad) || m))

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 65

HMAC

 Because of the HMAC paddings of the ipad and the opad, we
have a special situation

 The HMAC fills this buffer by it’s definition with
0x363636363636... and 0x5c5c5c5c5c5c5... and then XOR's
the password on it

 This construct completely fills the buffers so that we have all
data ready to run the first call to the selected hash transform

 We do this as soon we know the final password and then
cache the results of both ipad and opad for later usage

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 66

HMAC

 Conclusion

 Reduces the number of calls to H() by 2 for each
iteration

 Number of calls to H() in WPA/WPA2 is 4, lead to a
performance increase of 50% compared to defender

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 67

Failed custom schemes
Overview

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 68

Failed custom
Schemes

Application Failure type

IPB2 Salt integration

1Password Block-chaining

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 69

IPB2

Failed custom schemes

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 70

IPB2

Used in

 Invision Power Board

Technique

 Precomputing

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 71

IPB2

 This is simple to explain

 The IPB2 scheme is defined as

 md5 (md5 (salt) + md5 (pass))

 Since the salt is known, we can precompute it after loading
the hash

 Attacker requires just 2 calls to H() but defender requires 3

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 72

IPB2
 Conclusion

 Performance increased by > 30%

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 73

1Password
Failed custom schemes

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 74

1Password

Used in

 AgileBits 1Password

Techniques

 Early-exit

 Precomputing

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 75

1Password

 This is an example of how an algorithm was designed in a
way where the designer was lacking the vision of an attacker

 1Password uses PBKDF2-HMAC-SHA1 to derive a 256 bit key

 PBKDF2 can be configured on how much bits of output to
produce

 In this case it’s HMAC-SHA1, but SHA1 outputs only 160 bits.
So that means the defender has to run two rounds on SHA1
to produce 320 bits output and then let PBKDF2 truncates it
to 256 bits

 1Password then uses AES in CBC mode to decrypt 1040 byte
of data

 To be exact, it takes the first 128 bit of the derived key to
setup the AES key and takes another 128 bit as an IV for the
CBC

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 76

1Password

 The goal is match the final padding block after decrypting
1040 byte of data. If you find the last four 32-bit integers at
0x10101010 the padding is correct and you know your key
was correct

 But in combination with the CBC mode you use the IV only
for the first decryption. You then replace it with the
ciphertext of current block (which is used for the next block)

 Again, to validate the masterkey is correct, all we need is to
match the padding value. To satisfy the CBC we just need the
previous 16 byte of data from the 1040 byte block. We do
have it already since it was provided by the keychain

 There is no need to calculate the IV at all

 Instead of calculating a 256 bit key in the PBKDF2, we just
need to calculate 128 bit

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 77

1Password

 Conclusion

 Using both optimizations, Early-exit (using HMAC
optimization) plus only calculating 128 bits instead of
256 increased the performance of an attacker compared
to the defender by 400%

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 78

Thank you
for listening!

 Feel free to contact me!

 via Twitter: @hashcat

 via Hashcat forum: http://hashcat.net/forum/

 via IRC: freenode #hashcat

 via Email: atom at hashcat.net

Jens Steube - Optimizing computation of Hash-Algorithms as an attacker 79

